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FOREWORD
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Engineer of the Structures and Dynamics Division (FIBR).

The contracted work was performed between June 1977 and October
1979.

The work was performed in the Advanced Mobility System Department,
Bell Aerospace Textron. Mr. Richard D. Thom was the Technical Director
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1.0 INTRODUCTION
a. General

Progress in the development of practical structural optimization

technology has been consistently characterized by a series of major advances,

followed by periods of consolidation and even retrenchment. Design or

optimization is fundamentally a more sophisticated concept than structural

analysis and it is therefore only to be expected that the derivation and develop-

ment of new techniques will be a much slower process than, say, the develop-

ment of finite element analysis methods.

After the major concentration of attention in the 60's on mathematical

programming techniques reached what was effectively a computational

stalemate, the development of optimality criteria methods(') in the early 70's

appeared to offer major improvements over any other optimization methods

currently in vogue. Certain deficiencies in optimality criteria methods were

recognized but the computational advantages of some approximate methods

were sufficient to warrant the development of large scale computer programs,

such as OPTIM 2 ') and ASOP 4 ~p Following the initial rush of development has been a larger period of

study, during which the deeper implications and above-mentioned deficiencies

in the approximate optimality criteria methods have been evaluated. Although

a number of differing approaches to redesign strategies have been proposed

by a number of authors, it has been demonstrated(5 ) that the vast majority

of these approaches are really variations of a common theme. The essential



differences being merely resident in the selection of arbitrary coefficients

ri and other parameters which might appear to influence convergence

characteristics.

In spite of this work, it appears that little real headway has

been made in solving some of the fundamental problems in optimization.

The use of a Lagrangian formulation is well established as a starting point

for optimization but there are still many outstanding obstacles between the

initial concept and workable optimization tools. For single displacement

constraints, there is no problem. For multiple displacement constraints, the

governing optimality criteria can be established, but the solution of these

nonlinear equations with unknown constraint population is by no means a

solved problem. For stress constraints, even the establishment of valid

optimality criteria has not hitherto been successfully performed. In summary,

it may be stated that there are no adequate operational methods for optimizing

structures subject to multiple constraints on strength (stress), stiffness

(displacement) and fabricational limits (minimum member sizes). Other types

of constraints -stability, dynamic response, flutter and aeroelasticity are

of prime importance, but they are generally and generically related to the

three basic constraints. Hence, the approach is to solve the problems

associated with the basic constraints and the more sophisticated constraints

will follow.

For stress constraints, the classic, time-honored and erroneous

fully stressed design (FSD) method based upon the stress-ratio technique

-2-



is most widely used. FSD, while inaccurate, has the overwhelming merit

of being extremely simple and economical to use. For the treatment of

displacement constraints no equivalent existed in the 60's and only rigorous

(and costly) mathematical programming methods could be used.

The development of the methods now generally labeled as optimality

criteria was the result of attempts to fill this need for an approach to

displacement constraints. The optimality criteria methods are iterative

(as are mathematical programming methods) but the number of iterations

required for convergence appeared to be largely independent of the number

of variables (the downfall of pure math programming).

A considerable degree of success was achieved, particularly using

the envelope method, but the limitations of the approach were recognized.

The solution is exact for a single equality (displacement) constraint only.

For multiple constraints,the procedure for active/passive partitioning of

members is approximate and there is no capability for treating problems

involving mixed equality and inequality constraints. In addition, the

incorporation of stress and fabricational constraints is effectively based

upon the FSD method.

Work has been carried on by a number of research teams in attempts

to (a) solve the problem of multiple displacement constraints in a rigorous

(or even non-rigorous but practical) manner - but with little real success and

(b) improve upon stress-ratio FSD for strength constraints. For the latter,

concepts such as strain energy density, adaptive steps, etc., have been

investigated but none of the approaches have been totally effective.

-3-
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The finite element displacement method has dominated the field of

4 analysis for many years and has been used almost exclusively in optimization

work. The force method has largely been ignored in analysis and consequently

has not been considered of general or particular relevance to optimization.

Some recent use has been made of the force method( 6 ' 7), but this was

primarily to reduce the computational effort associated with iterative analysis.

At Bell, the role of the force method was examined (8) to determine the

possibility of a fundamental integration of the analysis and redesign philosophy.

The preliminary results did indicate a potential for the rigorous incorporation

of stress constraints. While extremely simple, the approach of using the

force method concept to overcome the difficulties associated with strength

optimization of redundant systems appears to be entirely novel. If the

internal redundant forces are considered to be self -equilibriating external

forces, the structure considered becomes effectively statically determinate.

The optimality criteria for such a determinate structure can then be derived

rigorously for either displacement or stress constraints. The compatibility

conditions, associated with the redundancies, now become zero-valued

quasi-external displacement constraints. Additional optimality criteria are

derived to permit the consideration of the redundant forces as subsidiary

variables.

The problem of stress constraints is thus transformed into one

involving displacement constraints. This general concept has also been

proposed for bar-type structures~~~ whereby the maximum allowable

-4-



stress in a bar element is related to strain and hence the relative displace-

ments at each end of the bar.

While this approach is undoubtedly entirely valid, its extension to

other types of finite elements may present a major problem. Also, it is

believed that it may require more computational effort than the current

force method approach.
b. Force Method Background

With the generation of optimality criteria for both stress and

displacement constraints, the next problem is the solution of the resulting

set of nonlinear equations. The most appropriate approach is through the

use of some form of Newton-Raphson technique.

Attempts to solve the linearized form of the total set of governing

equations was relatively unsuccessful - principally due to the inability of

the search technique to identify and distinguish between active and inactive

constraints.

This difficulty was largely overcome by the introduction of a linear

programming technique, which provided an estimate of the optimal population

of active constraints. This approach which is based upon a local linearization

of the domain, leads to the selection of full vertex corresponding to the

satisfaction that the number of constraints is equal to the number of variables.

For stress constrained problems in which this situation applies at

the optimum, the use of the linear programming approach has been found

to generate this optimal design in only one or two iterative steps. The

validity of the optimality is demonstrated by checking that all Lagrangian

multipliers are non-negative.
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Historically, in test problems involving only stress and minimum

size constraints, the optimum designs determined have appeared to be full

vertices- -i. e., the number of constraints is equal to the number of variables.

Even when it has not been possible to determine the optimum design rigorously,

there have been indications that the optimum design tends to have a large

number of active constraints. The question of number of active constraints

is important since it affects significantly the strategy required. Therefore,

for a number of variations on a 22-bar truss theme, analytic studies were

undertaken to determine the optimal design and demonstrate rigorously the

active constraint populations. It was shown that, depending on the values

of certain parameters, some optimal designs had 22 constraints and others

only 2 1.

For such problems, in which the optimum does not occur at a full

vertex, the linear programming approach can still play a dominant role.

The linear programming stage will lead to a full vertex design but one for

which some Lagrangian multipliers are negative. These correspond to

constraints which should not be active at the optimum design and hence

should be discarded. For the reduced set of constraintsothe Newton-Raphson

method can be used satisfactorily. The key to the solution of the optimal

system is a good reliable indication of which constraints are active at the

optimum design.

When additional displacement constraints are considered, the basic

approach is essentially unaltered. Displacement constraints appear even

-6-



in the stress constraint case--as compatibility conditions. Thus the mathe-

matical formulation is readily extendable to represent real external displace-

ment constraints. What is different is the uncertainty regarding which of

these displacement constraints is active. By definition, all compatibility

conditions are always active constraints; additional displacement constraints

need not be active. Also, displacement constraints tend to dominate, some-

times to the exclusion of other types of constraints. Hence, a displacement

constrained optimum design may have a much sparser constraint population

than a full vertex design.

Nonetheless, the same strategy can be applied as for the purely stress

limited cases. The constraint population predicted by the linear-programming

appears to be less valid and greater reliance has to be placed on constraint

acquisition and discard algorithms which are incorporated in the full Newton-

Raphson search.

c. Report Organization

In Section 2 of this report, a full technical discussion is presented

of the various stages in the development of a force method optimization

program. Section Z. 1 redefines the development of optimality criteria for

displacement constraints and highlights the problem of incorporating stress

constraints in a rigorous manner. The fundamentals of the force method

are presented for completeness in Section 2. 2, since this analysis concept

is generally neglected in modern finite element work. This discussion also

includes consideration of structure cutters. Section Z. 3 pulls together the

optimality criteria approach and the force method and defines the overall

-7-



approach and governing equations. The problems and difficulties encountered

in the early work are discussed in Section 2. 4 leading into the development

of the linear programming approach - Section 2. 5. The remainder

of the section dealswith the analytic study of the 22-bar truss problem, the

concept of constraint discard and the generalized Newton-Raphson approach,

and finally the introduction of discrete displacement constraints. Results of

various optimization problems are inserted throughout these discussions

where relevant.

Section 3 outlines the development and logic of the computer program

which evolved from this study. The final section summarizes the work by

presenting conclusions and recommendations.

-8-



2.0 TECHNICAL DISCUSSION

2. 1 Optimality Criteria

The concept of developing optimality criteria for structural

optimization problems using a Lagrangian approach is well established.

This was the basis of the envelope method used in the development of the

OPTIM series of programs(2, 3). A number of variations on the optimality

criteria solution algorithm have been developed, but a comprehensive

study( 5 ) has effectively demonstrated that all these algorithms are

essentially similar. It must be noted, again, that all these approaches

have been developed using a vigorous basis for the consideration of

displacement (and minimum size) constraints. Stress constraints, where

they have been produced, have been treated in a more approximate

manner

To understand this, it is appropriate to recapitulate the

basic tenets of the Lagrangian approach to the development of optimality

criteria.

The general problem is the minimization of the weight W

of a structure subject to a number of inequality constraints of the form

Cj - C. < 0 acting on various behavioral response characteristics of the

structure.

While many types of responses can be constrained, for the

purposes of this study attention is confined solely to displacements, stresses,

and minimum member sizes. Other types of constraints -- stability,

* -9-



dynamic response, flutter, etc., are of prime importance in structural

design, but they are generally and generically related to the three basic

constraints mentioned above.

The standard approach is to form a Lagrangian

L = W + ~.X(C 3 -)(1

where W is the merit function (weight) of the system to be minimized.

C. is the value of some response characteristic which is

constrained to be less than or equal to an allowable

value Cj

and Xjis an undetermined Lagrangian multiplier.

Differentiation of Equation I with respect to the primary design variables

will yield a set of optimality criteria which must be satisfied by the optimum

design. Differentiation of Equation 1 with respect to the secondary

variables (Lagrangian multipliers) yields explicitly the constraint conditions.

One major problem in this or any other approach to structural optimization

is the determination of which constraints are active (e. g. , satisfied as

equalities) and which are inactive (inequalities). This problem will be

addressed in a later section.

Under the assumption that the constraint population can be

determined or defined, solution of the combined set of optimality and

constraint equations (usually nonlinear) will indeed yield the optimum design.

To have a Lagrangiari, Equation 1 , which is capable of

explicit differentiation for solution, it is necessary to introduce certain



assumptions and limitations on the mathematical model of the system.

For the merit function, two conditions must be satisfied:

(1) The total weight is the sum ui. the component member

weights.

(2) The weight of each member is a linear function of its

single design variable.

These are fairly traditional assumptions for weight minimization

problems. The effect of attachments and joints is ignored and attention is

restricted to essentially membrane type of behavior. In a finite element

idealization, only membrane plates and pin-ended framnes are used to model

the structure*.

The weight of the structure can then be written in the form

m

W WiA. (2)

For the constraint conditions, basically similar conditions

must be satisfied:

(3) A constraint is applied to a behavioral characteristic

of each individual member of the structure or on the

linear sum of contributions arising from each member.

*There is an exception to this wherein thin-walled circular tubes can be

used to model space frames with flexural members.



(4) Each constraint or constraint contribution must be

expressible as an explicit differential function of

the design variables.

Condition 3 clearly permits the consideration of member

stresses and minimum sizes directly and is consistent with the classical

virtual force method for calculating displacements.

Condition 4 is of much more complex significance and has

a dominant influence on the range of applicability of the Lagrangian approach

to structural optimization.

For minimum sizes, Condition 4 imposes no special

restrictions. To be consistent with other constraints, it is found to be

convenient to express minimum size constraints in the form

A" i----m (3)Ai

where A i is the current value of a member size

Ai is its minimum allowable value.

and m is the number of elements in the structural model

The corresponding term in the Lagrangian is written

m

l)

where/t4i are the associated Lagrangian multipliers.

- 12- i



Displacement of a structure can be computed using the virtual force method.

For a pin jointed framework, this has the form

m

g~ i S~ i (4)Z Ei Ai

where SiP are the actual element forces due to the

applied loading

Si are virtual element forces associated with a
1.

virtual unit force applied at the point of the

unknown displacement E

Land E. are the length and moduli of the bar elements

For plate elements, similar expressions can be derived. The more general

form of Equation 4 can be written

S ptj 5* (5)

where Si', Si are the vectors of element forces

and fis the assembled diagonal element flexibility

matrix

Although the displacement of Equation 4 has been derived here through

what is basically a force method formulation, this is not an essential

requirement. It can be obtained with the same degree of validity using

a displacement method.

-13-



In Equation 4 S3 need only be in static equilibrium with

the virtual load and is hence independent of the member sizes Ai. On the

PP

ther hipadmnth bcorcristrbulnto mee ise rieenent of A.ndison in

statiallyreitrinneal strucltur Foriora genelly reunant assthst

P

Si was independent of A. to overcome this obstacle. The argument used

was that the internal force distribution, even in a redundant structure,

was only weakly influenced by the elastic characteristics of the members

and had negligible variation for small changes in member size. Unfortunately,

this is not generally true and, as will be discussed later, the error in this

assumption has hitherto proved to be the major stumbling block in introduction

of stress constraints. Fortunately, for the case of displacement constraints,

the assumption is found to introduce no error. The reason is that the

assumption of invariant S. ignores terms in the differentiation of the

type (--4 S- fSi It thas been shown ( 5 that these terms do vanish

over the entire structure, since they represent the virtual work of self-

equilibrating systems and are hence zero.

Hence for displacement, the constraint condition can be

written in the form

m

Ai 4 C3  j 1-I -n (6)

i~l -14-
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rSi P sij Li are now considered to bewhere -jE

E.

independent of the variables A.
1

and Cj is the allowable value of the j displacement

constraint

The corresponding terms in the Lagrangian are
n m

A.
j=l i=l

where are the associated Lagrangian multipliers.

For stress constraints, the form is deceptively simple.

S.
1t

A. (7)~i

As discussed above, this will not meet the requirements of

condition 4 directly for redundant systems, since Si is a too complex

function of all A i. There is no corresponding term for stress constraints

to that which allowed the derivative J S to be ignored in the displace-
dJA

ment constraint derivation. If it is assumed that Si is invariant, which

is exact for statically determinate structures only, the use of the optimality

criteria approach will lead directly to a fully stressed design -- which is,

again, exact for statically determinate structures only.

The only solution to this problem is to include either directly

or indirectly terms which will allow representation of S " One

-15-



method is to compute finite difference approximations but this is generally

too expensive computationally. Another approach lies in the use of the

force method as will be discussed in the next section.

Omitting stress constraints directly reduces the problem

to minimum size and displacement constraints only.

The Lagrangian can now be written as

m m m

W1 A1 ~ ++ i~

i=l i=l i~l

(8)
n m

j_ _I
j=l il

The third term of Equation 8 for stress constraints can only be strictly used

if the structure is statically determinate. The term is included here for

completeness. Setting the differentials of Equation 8 with respect to

Ai equal to zero, leads to m non-linear equations with the design variables

Ai and the Lagrangian multipliers / i and j as unknowns. Selection

of a set of active constraint conditions will define (a) which Lagrangian

multipliers are zero-corresponding to inactive (inequality) constraints

and (b) provide a set of k (where k4 m) non-linear equations with design

variables as unknowns.

If the set of active constraints is known accurately and

k = m, the constraint equations can be solved using a Newton-Raphson

-16-



approach to yield the optimum design. As will be discussed later this

set of circumstances does not occur too frequently. Either k Om

or, even more likely, the active set of constraints is unknown.

If only one displacement constraint is active, the resulting

problem, although still nominally non-linear, can be solved algebraically.

This was the basis for the envelope method( from which the OPTIM

programs have been developed. In the envelope approach, each displace-

ment constraint was considered in isolation and an optimum design generated

to satisfy that constraint alone. The interaction of several simultaneously

active constraints was approximated by selecting a composite design from

the envelope of the individual designs. This composite design was modified

using a concept of active and passive member partitioning wherein the design

of members was allocated to be controlled by a specific constraint condition.

This partitioning was further modified by a representation of member minimum

sizes and stresses. The stresses were effectively represented by fully

stressed design criteria. While the envelope method has achieved some

success, its greatest weakness still lies in the area of stress constraints.

Alternate approaches to the approximate solution of the non-

linear equations arising from the differentiation of Equation 8 have been

very thoroughly investigated. Reference 5 provides a comprehensive

comparison of these methods of iterative solution of the non-linear problem

and attempts to identify the parameters which affect the erratic convergence

characteristics frequently encountered.

-17-
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The goal of the present work was not to duplicate these

efforts but to pursue the more elusive goal of incorporating stress

constraints in a vigorous manner. The key to this was felt to lie in the

philosophy of the force method of analysis.

2. 2 Fundamentals of Force Method

Prior work had indicated the use of the force

method philosophy did provide the basis for the vigorous representation of

stress constraints in a Lagrangian formulation.

In the vast majority of early work in the field of structural

optimization, the principal effort was directed towards the development

of methods of redesign per se. The use of a finite element method of

analysis was considered merely as an adjunct for determining stresses and

displacements rapidly and with a minimum of computational effort. It was

stated that any other method of analysis (e.g. , finite difference) would be

equally suitable. There was no attempt (or indeed any real reason) to

integrate the analysis and redesign philosophies in any real way. With

the dominance of the displacement method of finite element analysis in the

60's and 70's this method was fully developed and readily available for

incorporation into any optimization program with a minimum of effort.

The force method which had achieved initial promninance in the 50's was

effectively discarded because of some inherent disadvantages it was felt

to display in comparison with the apparently simpler displacement method.



In prior work on optimization( (6) some use was made of

the force method, but this was primarily directed at the reduction of

computational effort associated with iterative analysis. The analysis

was not made an integral part of the otpimization procedure. Advantage

was taken of the form of the equations to be solved in the iterative analysis

to reduce computational times considerably compared with displacement

method techniques.

Since there is a general unfamiliarity with the force method

it is appropriate to discuss and define the concepts which will be used in

subsequent sections.

The force method of analysis is based upon the overall

enforcement of structural equilibrium and the subsequent satisfaction of

compatibility*.

For a general finite element model of a structure a set of

overall equilibrium equations can be written

[P] = (A] [S] (9)

which relate the externally applied loads [P] and the internal member

forces [S]. If the number of equilibrium conditions is equal to the number

of internal forces the structure is statically determinate and [A] is a

square non-singular matrix. If the number of equilibrium conditions is

less than the number of unknown forces, the structure is indeterminate

*In the simplest of forms the displacement method can be seen to be

the converse of this concept.



or redundant; the degree of redundancy being defined by the excess of

unknown forces over the number of equilibrium conditions. It is the latter

case which is of significance.

The internal force distribution S is assumed to be the sum
4A

of two component distributions. The first component is one which is in

static equilibrium only with the applied loading system while the second

component arises from internally self -equilibrating force systems of

undetermined magnitudes.

1Expressed mathematically

S = bo+ bjX (10)

where bo is in static equilibrium with the applied loading

and bi are values of self -equilibrating unit force systems

whose magnitudes X will be determined

It is clear that both bo and b, systems will of necessity, individually violate

compatibility conditions, but their weighted linear combination will ensure

satisfaction of compatibility. The force distributions bo and b, are not

generally unique, except in very simple structures. Their determination

may require use of a concept referred to as a structure cutter.

From the definitions of the bo matrix it is clear that

there must be zero forces in as many members as there are redundancies.

These members can be considered as baing cut in the basic bo system'-.

*'These cuts are not real but are expressed as such to give physical

illustration to the concept of compatibility violation.
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The b 0 matrix can be written as

where bo are the values of the element forces due to unit values of P.

In the 'cut' members the only forces will be those due to the redundant

systems. Ita redundant system is assigned a unit magnitude in a 'cut,

member, the b, matrix may be written as

where the partitioning is as in Equation 11 . Combining Equations I1I

and 12 into 10 yields

[S] 0 [ 1 bi] [1 (13)

This matrix is square and invertible and its inverse may

be written

= -I--I[SI (14)

Equation (14) corresponds to two equations, the second of

which is trivial. The first is exactly Equation 9 which defines overall

system equilibrium.

Thus to generate the bo and b1 matrices it is only

necessary to start with the equilibrium condition, Equation 9 .From the

rectangular matrix [Al a non-singular square matrix [A1 ] is extracted



using a suitable rank technique. The b0 and b1 matrices are then

given by

b and b1 = j (15)

The extraction of (Al] is not a unique process and can be

influenced by a number of factors. The choice of the b0 matrix is of

minor significance, but the b 1 matrix will greatly affect the conditioning

of equations to be solved in satisfaction of compatibility. A considerable

effort ( 1 0 ) has been devoted to the development of structure cutters which

improve conditioning but their study is outside the scope of the present

discussion.

To enforce compatibility, the magnitudes of the redundant

forces must be selected to ensure that the relative displacements of the

cuts in the structure be set to zero. (An analogy to structural optimization

wherein displacements are constrained to a prescribed value can be

observed.) To accomplish this the virtual force method is used; the

virtual force distribution being given by the b1 matrix.

In matrix notation the compatibility condition is given by

b tf S = 0 (16)

or bltf b0 + (bltf b1 ) X 0

Hence X = -(blt b l )- (b l tfb O) (17)
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Equation 1? is the classic expression for the value of the redundancies.

While the apparent complexity of Equation 17 may indicate computational

cost, it must be pointed out that the order of the matrix (bg,ti bl) is only

equal to the number of redundancies - - a number usually considerably

smaller than the corresponding number of degrees of freedom encountered

in the solution of a displacement method approach.

Having discussed the force method concepts, it is now

appropriate to examine its relation to optimization.

2. 3 Role of Force Method in Structural 0]ptimizatio~n

in Section 2. 1, the optimality criteria approach to structural

optimization was discussed. The applicability of the Lagrangian formulation

for minimum member sizes, displacement constraints and stress constraints

in determinate structures was presented.

In the force method analysis, the internal force distributions

bo, b, were determined purely from static considerations. Hence, apart

from the final satisfaction of compatibility conditions, the entire analysis

effectively treats only a statically determinate system. Reference to

Equation 14 indicates very clearly that if the redundant forces X are

regarded as part of the applied force set, the entire system is indeed

statically determinate. Thus instead of considering a redundant structure

with an external load system P applied, the structure can equally be

viewed as a determinate system with an external loading system

The only additional requirement is that this structure will be designed to



ensure that the displacements associated with the (unknown) forces X

* shall be constrained to zero values. In an optimization sense stress

* constraints may now be considered because of the static determinancy.

Clearly this transformation from redundancy to determinancy

cannot be accomplished merely by making the above statements. Some

additional terms must be introduced into the mathematical formulations.

What has happened is that the set of design variables must be expanded to

include the values of the redundancies as unknowns.

Expressions for the internal forces must now be written

as linear functions of the additional variables X (Equation 10)

Condition 4 is still satisfied since the new functional relationships are

still linear. The set of optimality criteria must be expanded by the

geneatin o no ony Lbut also L conditions.

The full set of optimality criteria and constraint conditions

applicable to a force method formulation is presented in Fig. 1. In the deriva-

tion of the equations of Fig. 1. two types of displacement constraints have been

considered, those associated with the cornpability conditions and those with

externally defined displacement limitations (Fig. 9). The major difference

between the two terms lies principally in the absence of the unity for the

compatibility constraint value. Thus the stress constraint problem has

been solved effectively by transformation into a type of displacement constraint.

It is recognized that an alternate approach would have been to express each

individual (bar) element stress constraint as a relative displacement
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constraint at the two ends. This idea has been used( 9), but it is felt to

have the disadvantage of requiring more computational effort for reasons

which will be discussed in Section 3. 8, and also its extension to other

than bar-type elements is unclear. The definition of a simple relative

displacement constraint criterion will not usually suffice for a multi-node

plate element.

Having now the rigorous formulation which includes stress,

displacementand minimum size constraints, a method of solving the non-

linear equations must be derived.

2.4 Equation Solution and Constraint Detection

In general, there are potentially many more constraints

than variables and the actual number of active constraints is a small subset

of the total number present. An inactive constraint is represented by a zero

value of the corresponding Lagrangian multiplier and the term hence

vanishes from Equation 8 . An active constraint corresponds to a non-zero

multiplier. Although no physical meanings are usually attached to the

values of the Lagrangian multipliers, it is clear that their values are of

great significance.

Consider the first two equations of Figure 1, e. g., L and

SL Examination of the form of L and .L reveals they can be written in

the abbreviated forms

L = i Wi A+ 4 ( k - - I. (18)i A i

+ - compatibility terms
-26-
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C)Ai Wij k A1  (19)J~ik i

+:compatibility terms

where xk represents all multipliers

and Ki represents the remaining terms.

By linear combination, the following relationship can be formed

L +A iA1  L k (20)i i k

For the optimum structure all terms in L, except the first, vanish. Hence

at the optimum L* = W*, where an asterisk indicates an optimal value.
L

Also for the optimum structure - = 0. Therefore Equation 20

reduces to

W* = 2W*-

or W* =Z* Xk (21)

Thus at the optimum the weight of the structure is given by the sum of the

active constraint Lagrangian multipliers.

While this summation does indicate a physical meaning,

the only major use which has been made of Equation 21 has been as an

*It is to be noted that Lagrangian multipliers associated with compatibility

constraints do not contribute to summation of multipliers which equals

the weight. This is due to the absence of the unity which would survive

in the combination of Equations 19 and 20
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aid in determining when convergence on an optimal design has occurred.

Since the form of the non-linear equations to be solved is

well defined, it was felt that a Newton-Raphson method to solution was

a most practical approach. In a N-R formulation, derivatives of all the

functions are required. Since the entire approach via the force method

has resulted in explicit terms of relatively simple algebraic form, the

creation of the derivatives required for the N-R solution is a relatively

straightforward matter. The calculation of these derivative terms is

exact, which may assist in convergence, but more importantly, their

evaluation does not require finite difference or similar calculations which

would involve repeated structural analyses.

For the present set of nonlinear equations consisting of

optimality criteria and constraints, the linearized N-R equations are

given in Figure 2. All the derivatives are explicitly expressible

in terms of the constituent matrices. The derivatives are listed in

Figure 3.

In simple test problems, where the active constraint

population was known from the start, the N-R procedure has been shown

to converge rapidly on the optimal solution. In a small problem with three

structural elements and two displacement type of constraints, the envelope

method required 54 iterations to achieve a converged solution. The N-R

approach converged in 5 iterations on a design slightly lighter (by 0. 3%)

than that obtained by the envelope method.
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With the selection of the N-R as the prime solution technique,

the major remaining task appeared to be the generation of a method for

differentiating between active and inactive constraints.

Since all constraints are either satisfied as equalities or

their corresponding Lagrangian multipliers vanish, the inequalities

associated with all constraints can be transformed into equalities by

expressions including their multiplier. Thus a minimum size constraint

would be written

(i - 1)= 0 (22)

The resulting set of equations tends to become very large, but was indeed

a set consisting of equalities only. For a problem with m elements,

p redundancies and constraints on both stresses and minimum sizes,

a total of 3m + 2p equations are required.

The first problem to be considered was the selection of suitable

starting points for the linearized search. During the course of this stage

of program development, a considerable number of strategies were tested,

with very mixed results. The conclusion drawn at that time was that the

search procedure was extremely sensitive to the initially selected values-

particularly the values chosen for the Lagrangian multipliers. There was

some evidence, in a selected number of cases, that areas tended to converge

on known optimal solutions fairly rapidly, while multipliers took many more

iterations to stabilize. From later evidence, accumulated in future
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developments, it became clear that these were somewhat erroneous

conclusions. Since the equations are linear in the multipliers, the actual I
starting values selected for the multipliers is immaterial. What is of

dominant importance is their population--i. e., which are zero and which 4

are non-zero. Of lesser importance are the starting values for the member

sizes.

Since these points were not fully recognized, various schemes

for selecting starting values were investigated. For example, since the

sum of the multipliers was known to equal the weight, at the optimum, the

following scheme was devised. It is assumed that the applied load is carried

entirely in the basic bo structure, and its members are sized accordingly

for stress limits, the other members are set to minimum areas. Now for

each member, the individual weight is computed and half this value is

assigned to the respective minimum area and stress Langrangian multipliers.

This approach assumes, a priori, that every potential constraint is active

and has its own non-zero multiplier. As an alternate form of this starting

point, again the member weights are used to compute multipliers, but the

full member weight is assigned to either constraint dependent upon which

is assumed dominant.

These approaches and others did achieve some modicum of

success on three-bar truss problems - particularly those discussed in proposed

contractor tasks. The Newton-Raphson procedure was found to

be relatively unstable and extensive move-limits had to be introduced to prevent
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divergence occurring in early iterations. Eventually, a limit of :00%

variation in a design variable was found to be a satisfactory limit for

smaller problems. The logic of the program was designed to capture

additional constraints, should violations occur and to release them, if

the associated multiplier should become negative, or if the potential

move would take the design away from a constraint.

The 10-bar truss problem with the high allowable stress

in member 10, was next investigated. This proved to be quite troublesome

and required a considerable amount of numerical experimentation to obtain

solutions. Putting in a design close to the optimal did permit convergence

fairly rapidly, thereby demonstrating overall correctness of the coding.

For cases in which C~l0 4< 37V,50 psi, the optimal design

is fully stressed and the procedure did finally achieve the correct solutions

in a limited number of iterations -less than would have been required

using a stress-ratio method. For a'ic,> 37500 psi the convergence was

very poor and sometimes totally unstable.

The known optimal solution was reviewed and two potential

problem areas were tentatively identified. Firstly, there were members

present which were both fully stressed and at minimum area and secondly, the

optimum design had, by happenstance 11 active constraints. The former

condition was no real novelty since it had been encountered in some of the

3-bar test problems used previously. The latter condition, which arose

from the geometry and loading of the structure was felt to be potentially

more serious.
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Further examination of the cases which failed to converge

did indicate that the set of linearized equations being solved were probably

singular - or very close to it. Round-off accumulation prevents exact

singularity occurring but examination of the values of determinants suggest

the presence of this problem.

The possibility of over -coi~straint was felt to be a reality and

hence attempts were made to provide for detection and elimination of

singularities arising from this source.

Recourse was made to the use of the Cholesky method of

equation solution since the array of equations is symmetric. In the triangular

decomposition stage, a singularity appears as a zero (or near zero) term on

main diagonal. When such a term is identified, the associated equation can

be eliminated from the array by a decoupling process. This has the effect

of winnowing out equations which are linearly dependent on any combination

of previous equations. Thus the order of the equations will affect which

equation~s are discarded.

Some analysis of the algebraic form of the equations for

three-bar trusses did indicate circumstances under which singularities

could occur - although no generalization was possible. It was finally concluded

that it was preferable to discard constraints associated with minimum sizes

rather than stresses. This latter decision was purely arbitrary and was

based upon a judgment that stress constraints were of greater importance

than minimum sizes.
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The Cholesky equation solver was modified accordingly to

remove singularities and the ordering of the equations was changed to

ensure that stress constraints were favored. These changes had no impact

on the small three-bar test problems but did affect the 10-bar problems.

Some degree of success was attained but the convergence

was still found to be highly dependent on the starting point selected. Some

further effort was expended on modifications to step size limits but without

much change in the situation.

Finally, the form of the equations was reviewed again and

it was determined that the strategies used had created an undesirable

situation. If any member reached its lower limit, it would never be possible

on any subsequent iteration for that member to increase in size and move

away from the constraint. That is, once a minimum size constraint became

critical, it was retained. This was clearly unacceptable and required a

review of the entire approach.

From consideration of the array of governing equations, it was

recognized that the non-linearity was confined to the primary variables only,

the secondary (Lagrangian) variables were purely linear. Although this was

considered at some length, no use could be made of this fact until Reference 11

became available. This work had the effect of redirecting the entire effort

into a more fruitful avenue of approach.
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2.5 Linear Programming

While the N-R solution technique combined with the force

method does provide the potential for the vigorous incorporation of stress

constraints, it is clear that the major problem of constraint detection still

remains.

From examination of the form of the equations being

considered, it can be seen that the nonlinearities arise from the design

variables. The equations are purely linear in the Lagrangian multipliers.

While this suggests that some form of decomposition into linear and non-

linear problems might be possible, no progress was made in simplifying

solution techniques until the work presented in Reference 11 not

considered.

In Reference 11 the concept of duality is introduced and

is used to linearize the problem. While the duality approach is entirely

valid, the same linearization can be achieved in a more direct manner.

In Equation 21 it was demonstrated that the optimum weight

is the sum of the Lagrangian multipliers associated with all non-zero value

constraints. That means the optimum weight is explicitly independent of

the (primal) design variables. Hence if design variables are selected

which satisfy the constraint conditions either as equalities or inequalities,

in an arbitrary manner, the optimality criteria are now a non-square set of

(m + p) linear equations with n unknowns (n> m + p).
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Solution of this problem can now be accomplished using a standard

linear programming technique (LPT), with the merit condition (weight) being

simply the sum o' the individual multipliers. In the LPT, all Lagrangian

multipliers, except those associated with the compatibility conditions, will

be restrained to have values greater than or equal to zero.

The LPT will minimize the merit function by selecting which

variables shall have non-zero values (active constraints) and which remain

zero (inactive constraints). The result is a constraint population, with as

many constraints as there are variables.

With this known constraint population, a new design may be generated

readily, as will be discussed in a later paragraph.

This new design may not, in general, satisfy all the actual constraints

in the problem and hence may have to be adjusted, e. g., areas defined by

stress constraints may be smaller than minimum allowable sizes. Dependent

upon some simple test criteria, this new design may again be used as the

starting point for another iteration of the LPT. This cycle may be repeated

until convergence occurs, in which case the optimum design has been

generated.

It is of interest to note what will occur in purely stress constrained

problems. If other than the force method concept is used, all displacement

and compatibility related terms will vanish from the optimality criteria

equations of Figure 1. Examinations of the remaining terms in the equations

shows that the array uncouples into m individual problems, each involving
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*:, / and *A only. The solution to this then indicates that either a/A i (minimum

area) or Vti (maximum stress) is present in each member, i.e.. the classic

FSD solution. The presence of the compatibility related terms associated

with the force method formulation ensures avoidance of this pitfall.

The LPT approach generates a potential constraint population

at each iteration. It also generates values for the non-zero Lagrangian

multipliers. Experience indicates that these values are of minor worth,

but the population so defined is extremely relevant. The force method

approach is ideally suited to tbe determination of . structure which satisfies

a prescribed set of constraints. The proviso must be made that the number

of constraints equals the number of variables, i. e., that the design being

sought does lie at a full vertex in the design space. This is consistent with

the design population prescribed by the LPT solution which will

have selected a full vertex as optimal in the linearized design space. The

consequences of the optimal structure not occurring at a full vertex will be

discussed in subsequent sections.

In determining a structure which corresponds to a given

(full) set of active constraints, the key lies in the derivation of the internal

force distribution. An illustration of this is the usual method of generating

an FSD via stress-ratio.

An initial guess is chosen, the structure analyzed,and areas

adjusted to bring stresses to their critical values and/or to their minimum

sizes. The process is simple, but many analysis iterations may be required

-38-
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for convergence. This indeed is the method conventionally used in conjunction

with a displacement analysis technique.

Assume now that the distribution of critical constraints is

known a priori, i. e., which members are fully stressed and which have

minimum areas. Using the force method approach, the compatibility

equations are

(bIt f bo ) + (blt f bI)X = (23)

Using a slightly different notation, Equation 23 can be written in the form

m fj13 i " x ik

b Kb (b0 + b X ,j I --- n (24)
LZ Ak Xk) -'k

i=1
bo i + b, lXk

'5 k
For members in which the stress is critical + is replaced

A
i

by 0. For the other members A is set to Amin. All A-values are now

eliminated and the only unknowns are the redundant forces Xk. Solution of

the linear equations leads to the required internal force distribution which

satisfies the prescribed FSD conditions--without iteration. The areas are

obtained from the known stresses and the computed internal forces.

If the constraint distribution given by the LPT routine is

other than FSD-type, the equations to be solved become nonlinear. A

member may be both fully stressed and have a minimum area. Consequently

another member size will be completely unrestrained. The presence of

active displacement constraints will similarly leave some members undefined.
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In such cases, the set of compatibility equations must be

expended by force-stress-minimum area relationships and/or displacement

relationships. In either case the number of equations and variables

increases to (redundancies + undefined areas) and the equations become non-

linear. For their solution a Newton-Raphson technique has always proved

to be entirely adequate for problems in which the defined constraint population

corresponds to a feasible design. It can occur that the LPT will propose

an unfeasible constraint population. The method of handling this situation

is discussed in the program development section.

The LPT approach appeared to have great merit for over-

coming the constraint definition problems described in the previous section.

A new computer program was generated based upon the LPT

and checked out on a variety of small 3- and 4-bar truss problems. The

first major test of the program's effectiveness was the classic 10-bar

truss problem, in which one member has a significantly higher allowable

stress than the remaining nine members. This problem was extensively

discussed in Reference 12 , for a range of allowable stresses and had

been subsequently used as an evaluation tool for different approaches to

strength optimization. The new LPT approach was used on this problem

and was found to be startlingly successful.
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2. 5. 1 Ten-bar Truss Problem

The ten-bar truss shown in Figure 4 is constructed

of aluminum alloy throughout (E = 10 psi, P = 0.1 lbin ). The allowable

stress in all bars except number 10 is *25000 psi. The allowable for

member 10 has been varied in past problems from *25000 up to *75000 psi.

It has been shown ( 12 ) that for C1 _ 37500 psi a FSD is optimum.

For C 10> 37500 psi the optimum design (weighing 1497. 6 lb) is independent

of Cl0 and member 10 is neither critically stressed or at minimum size.

Use of a stress ratio approach leads to a totally different design weighing

1725.24 lb, an error of approximately 15% with a completely different

distribution of element areas.

The output from the pilot computer program applied to the

10-bar problem with 0 10 = ±75000 psi, is shown in Table 1 . Computer

program development will be discussed in a later section, but it is appropriate

to mention here some of the salient features of these output results.

No starting point design was specified so the program

automatically selects minimum areas as the default option. Experience

has indicated that such designs may be very poor approximations of optimal

systems, hence one stress-ratio cycle is optionally permitted to generate a

more-or-less feasible design. This design is still very different from either

the (known) optimum or the converged FSD. This cycled design is used in

the LPT routine and results in the proposed population of minimum areas and

fully stressed members shown in Table 1. The negative sign on stressed
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MEM 1-9 0.1 2.51000
MEM 10 0.1 15, 000

FIGURE 4 - 10-BAR TRUSS, BASIC STRUCTURE
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II

/INPUT
/JOB TIME%1,60
/INCLUDE RGHBC
/ZNCLUDE NEWT
/INCLUOE SUBS
/INCLUDE BARTEN
IEHORUN

PAUSE ENTER TOL,TOLI,IRO.ISR.IFRINTKODEI,KODE2
I .E-8,i .E-7,O.0,-3.0,0

STRESS RATIO AREAS

1 0.81854C 01 2 0.23950E 01 3 0.16050E 01 4 0.16050E 01 5 0.78146E 01
6 0.14196E 01 7 0.53946E 01 8 0.59190E 01 9 0.22698E 01 '10 0.11290E 01

x

1 -0.21033f 05 2 0.30183E 05

MEM 1 2 3 4 5 6 7 8 9 10

AREA 0 0 0 1 0 0 0 0 0 9
STR -1 -1 1 1 1 0 -1 1 -1 0

SX VALUES I -0.18533E 05 2 0.47683E 05 3 0.12012E 01
X VALUES I -0.IZ695E-01 Z 0.97656E-03 3 0.17090E 0

~N-R AREAS

1 0.8100OE 01 2 0.39000E 01 3 O.10000E 00 4 O.IOOOOE 00 5 0.79000E 03
6 0.100 17 0.55154E 01 8 0.579832 01 9 0.14142 00 20 0.36769 01

X VALUES -0625033E 04 2 0.250002 04

LAGRANG IAN MULTIPLIERS
1 0.0 2 0.0 3 0.0 4 0.60001E 01 S 0.0
6 0.360002 01 7 0.0 8 0.0 9 0.0 10 0.0
11 0.334002 03 12 0,780OOE 02 13 0.660002 02 T4 0.60000E 02 15 0.22200E 03
16 0.0 17 0.15600E.03 18 0.420002 03 19 0.13200E 03 20 0.0

21 0.69333E 02 22 -0.69333E 02

SUM MEM WGT - 0.14976E 04 SUM LAM' 0.14976E O

M.0070 END
M.0072 BEGIN

TABLE I - 10-BAR TRUSS - COMPUTER RESULTS
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members indicates a compressive allowable. It is to be rnoted that member

10 is undefined, while member 3 is both fully stressed and of minimum area.

ANewton-Raphson routine is used to generate a design

corresponding to the specified constraints using the previous design as a

starting point. Since the structure is doubly redundant and one member

area is undefined, there are only three nonlinear equations and three variables

(X1 , X2 and A 1 0 ). Only three iterations are required for convergence.

With these new values of the redundant forces, the known stresses, minimum-

sized members and an area for member 10, the new design is generated and

printed out. It can be seen that member 4 is at minimum size but this is

not recognized as an active constraint. This is a rare, but not unique,

situation which arises from the geometry and loading at Gridpoint 3.

Members 3 and 4 are effectively linked together. The presence of a surplus,

unused constraint has no influence on the problem or solution technique.

A shortage of constraints, on the other hand, is of major consequence as

will be discussed later. For this design, the corresponding non-zero

Lagrangian multipliers can be obtained from the linear solution of the

optimality criteria equations. Of the printed set, the first ten multipliers

are those associated with minimum sizes, the next ten with stresses and

the final two are the compatibility constraints.

Since all multipliers associated with non-zero type constraints

have positive values, the design is optimal. As an additional check the sum

of the multipliers does equal the weight. This solution, with its extremely
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* rapid convergence is an excellent demonstration of the power of the L. P. /

Force method. The number of steps was minimal as was the computational

effort.

The next stage in the check-out process was the application

of the program to a larger problem -- the 22-bar double truss.

2.6 Twenty-two Bar Truss Problem

The 22-bar truss problem is an extension of the 10-bar

problem insofar as it consists of two 10-bar cantilever frames connected

at their extremities by a pair of hangars (Figure 5 ). A single load

of 100, 000 lbs is applied vertically at the extremity of the hanger. While

the modulus is held constant at 107 psi throughout, various allowable stresses

and material densities were to be considered. The truss problem has proved

to be a significant one and has been investigated by a number of researchers ( 9' 13)

Due to a desire to explore the effects of varying critical parameters and also

as a result of confusion as to specified values of some parameters, a number

of cases have come into being. This confusion has been compounded, possibly

by the fact that all problems have been labeled either Case A or Case B.

Whatever particular values for stress allowables, densities or minimum

sizes, the essence of the problem here is to demonstrate the manner in which

the applied load is distributed optimally as the strength/density ratios are

varied between the two half (10-bar) frames. The stress-ratio method is

clearly useless for this type of problem since it includes no reference what-

ever to material density- -clearly a major factor.
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Someatteptswere made to run some cases using the

program developed previously. The results obtained were extremely

variable. Some cases produced solutions readily, whereas others failed to

converge at all. This led to a re-evaluation of the concepts used. In

particular, the question of the number of active constraints at the optimum

design was considered. In all stress constraint test problems which could

be reviewed either the number of active constraints was equal to the number

of variables (full vertex) or it was impossible to state reliably how many

constraints were active. This latter situation occurs in solutions where,

for example, many stresses or areas are within a few percent of their

critical values and there is no overt determination of the active constraint

population.

Since this question of number of active constraints is of

prime consideration, a more detailed study of the 22-bar problem was

deemed appropriate. Although this structure (in its various forms) has

been difficult to optimize using general purpose optimization methods, the

generation of optimal solutions analytically is relatively straight forward.

In all the cases of interest, the allowable stresses and

densities are uniform throughout each 10-bar truss which form the two

principal halves of the structure. The approach to the analytical optimization

is through substructuring. The individual 10-bar trusses are optimized

parametrically in terms of the applied load and the two halves are coupled

through a compatibility condition. This approach is only possible here due
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to the special geometry of the structure, although the substructuring concept

has been proposed for general use in the optimization of complex structures ( 1 5 ) .

From the work performed in the study of the 10-bar truss,

discussed previously, it has been conclusively demonstrated that a fully

constrained design is optimal for uniform material and strength properties.

For a vertical load applied at the outermost lower vertex, the optimal

population has been determined. The population is that which normal

engineering intuition would suggest, inasmuch as there is little load diffusion

from principal determinate load paths when the redundant elements are

introduced.

To optimize the structure, the force method approach is used.

a) Basic Structure

7-

//

3 
Y 3

b) Determinate (b0 ) System c) Redundant (1) Systems

FIGURE 6 -10-BAR TRUSS
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The basic structure is shown in Figure 6 a). The constituent determinate

b0 and redundant b, systems are shown in b) and c). The choice of these

systems is non-unique, but the members retained in the b 0 -system are those

which form the natural primary load bearing structure. Provided the ratio

between the applied load and the stress allowable is sufficiently high, the

members 1, 3, 4, 8 and 9 present in the b0-system are fully stressed.

The remaining members 2, 5, 6, 7 and 10 have minimum areas. It is

possible that the applied load could be so small that some or all of the primary

b0-system members would have to be set to their minimum areas instead of

being fully stressed. In the present analysis, this situation has not been

found to occur. For the systems shown, the relevant matrices are

2 1 0
0 0 1

-1 1 01
-10 1 - L 1

b(3 P 0 1i 1 fE 1 2
0 0 11

-2- --I 0 2

-2 0 1L 11~- 0

0 _0 L-"

where f is the diagonal matrix of unit sized element flexibilities

L is the length of a vertical or horizontal element (=360")

and E is the uniform elastic modulus.

With the information that members 1, 3, 4, 8, and 9 are fully stressed to

the allowable value O'and the remaining members have a minimum area A*,

the usual compatibility conditions can be written as
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(2 + l)Xl + X2 - - 2CrA*

xi + (3+2rT)x 2 = 30A* (26)

Hence X1 = -.68767264(0"A* = -loCrA*

& X2 = .63270460 9A* = o 2 0A I (27)

The resultant internal force distribution, S, is

2P + -', CA
0( 2 (A*

-P + 0( 1-A*

-P + cO2 O-A

S= ( 1 + 012 ) a-A (28)

T2 2ol2 *

-JTP O-A*|~~ P-5zO'A*

The corresponding areas are

2 P/0- + l A*

A*

PIT - dl A

PI/"- c 2 A*
A (29)

A*

A*
T2(V/ + *<, A*)
2(P/-o 2 A*)

A*
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The weight of the optimized 10-bar truss is

W = L8P/a" + (3+212 + 2 -i- 3 .( 2 )A*) 360 D (30

where /0 is material density.

Thus the weight of each half-structure is expressible purely as a function

of the load P at the free end. Since the total load on the structure is known,

the problem is now reduced to a single variable optimization which defines

the sharing of the externally applied load between the left and right-hand

halve s.

The problem is further simplified when the deflection of each half

is computed. Using the unit virtual load method, only the members in the

determinate b. system need be considered. Since these members are by

definition fully stressed, their strains are independent of their areas,

hence the total eeflection is independent of the applied load.

ie . S I C Z f- b (31)

1,3,4,8,9

Note here that d is intended to signify both positive and negative stresses

which must be accounted for in performing the summation.

Using the values of Equation 25 the deflection of the 10-bar frame is

8L" (32)
E

Since L and E are not variables in this problem, the deflection of

each half-frame is directly proportional to the allowable stress only. Thus

when the allowable stresses are different on each side, the higher stressed
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side will always deflect more, irrespective of which side carries the

predominant share of the applied load.

In any particular case, the stresses are specified and the individual

deflections are known (e. g., SLand R). The ends of the hangars

(members 21 and 22) are joined together. Hence the difference in stress

between the two hangers is

L

where L1 is the hanger length (=360011) and the subscripts indicate hanger,

LHS and RHS, respectively.

Finally, from an inspection of the problem parameters (allowable

stress and density), it can be readily decided which half structure should

carry the major portion of the applied load. A logical corollary from this

is the fact that the hanger on the lightly loaded side will have a minimum area.

It follows therefore that the optimum structure will have at least 21 active

constraints. The existence or otherwise of the 22nd depends on the values

of the parameters.

To complete the optimization, it is assumed that the LHS always has

the higher allowable stress. Initially it is taken that the stress/density ratio

ensure that the major load is carried on the LHS. Substituting numerical

values into Equation 30 the weights of the two halves can be written as
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WL + 2.554968A 3 360WL .O- L

WR + 2.554968A*_ 360 R (3
L(-R

The applied load of the 10 5 lb is the sum of the individual hanger

loads, i.e.

PL + PR = 10 5  (35)

r 8PR 8xI0 5  *
Hence W = - 1+25468A J 360+ . L + 2L (36)

Since the major load is on LHS, AR AH (AH = minimum area of

hanger) and
PR

CR = (37)
"H A H

Because the LHS deflects more than the RHS, the stress in the RH hanger

is less than that of the LH hanger.

Then OLH = O'RH -AeH

PR 8L (38
A * L I L R

The corresponding area AL is given by

AL L 8L (39)

A R- L
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The total weight is

WTOT WL + WR + WLH + WRH (40)

While this expression is somewhat complicated algebraically, substitution

ot numerical values for known parameters simplifies it to the form

WTOT =C + C2 PR + C3 (41)
(PR-C4)

where C1 , C2 , C 3 & C4 are numerical coefficients

The weight of the structure is hence a nonlinear function of the single variable

PR' The minimum weight may then be either a free minimum from Equation

41 or may be constrained. Differentiating Equation 41 WRT PR yields

_____ C 3  z
WTOT - C 2  C3 0J 2R (PR- C 4) 2

1/2
i.e. 3R C4  (42

Since the RH hanger has minimum area, if its stress (Equation 37, computed

using PR given by Equation 42 , is greater than its allowable, then the RH

hanger is at both minimum area and maximum stress and Equation 42 does

not apply. I,, this case

P-R RH AH (43)

and the optimum design has 22 active constraints. With the determination

of PR from either Equation 42 or Equation 43, the optimum design is
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completely defined. Both fully- and partially -constrained designs can

therefore exist for stress constrained problems. If the stress/density

* ratio transfers the loading to the RHS, a similar procedure is followed

to obtain the optimum designs. Again, depending on the values of the

parameters both 21 and 22 active constraint designs may occur.

During the study of this basic problem by various investigators, a

number of different combinations of paraimeters have been used, labeled

either Case A or Case B.

To attempt to bring some clarity into the situation, the eight cases

given in Table 2 are defined. It is believed that these eight cases

encompass the principal problems studied by various investigators. It is

left to the reader to correlate the new and old designations.

TABLE 2

22 BAR TRUSS - COMPUTER RESULTS

LHS ARHS * IHANGER
CASE kiA*, A *

________ksi 10 k~ i 0ks i A*

1 50 .1 .001 25 .1 .001 5000 .1 .001

2 30 .3 .001 25 .1 .001 5000 .1 .001

3 50 .1 .001 I25 .1 .001 500 .1 .001

4 30 .3 .001 25 .1 .001 500 .1 .001

5 50 .1 .01 25 .1 .01 5000 .1 .001

6 30 .3 .01 25 .1 .01 5000 .1 .01

7 50 .1 .01 25 .1 .01 500 .1 .001

8 J 30 .3 .01 25 .1 .01 j500 .1 .001
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Using the analytical approach described above, the following optimal

solutions have been determined (Table 3).

TABLE 3
22 BAR TRUSS OPTIMAL SOLUTION OF PRICIPAL CASES

CASE 1 3 45 6 7 8

WEIGHT 605.096 i1202.174 1654.04 1232.94 606.752 1312.764 655.70 1236.2

CONST 21 21 22 21 21 22 22

With the determination that stress constrained problems could exhibit less

than fully constrained optimal designs it was necessary to revise the

previously developed approach to accommodate this situation.
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2.7 Constraint Discard and Generalized Newton-Raphson

With the determination that optimal stress limited designs

could be less than fully constrained, it became necessary to revise the

LPT approach.

From the discussion presented in Section 2.4, it is clear

that the operation of a successful search procedure is highly dependent

upon some prior knowledge of active constraint population. The LPT will,

by definition, always select a full vertex in the linearized design space. If

the LPT approach is valid, the optimal population should be a subset of

the LPT population. Hence, one approach is to generate a feasible (but

non-optimum) full vertex design and then discard unwanted constraints in

some rational manner. If a less than fully constrained optimum design is

used as an input guess to the LPT routine, a full complement of constraints

will be identified, but the Lagrangian multiplier associated with the spurious

constraint will be zero. Unfortunately, this does not prove to be of much

assistance, since the spurious multiplier generated by the LPT will be

non-zero when an off-optimum design is used as input. Also since experience

indicates that the values of the multipliers vary by several orders of

magnitude in any one problem, it is not practical to use absolute or relative

size as a criterion for constraint discard.

After some experimentation with a variety of techniques,

which included arbitrary or preferential discard of constraints associated

with minimum size members, a new strategy was developed.
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In the LPT routine, the variables (Lagrangian multipliers)

are restrained to have values greater than or equal to zero. Negative

multipliers are not permitted (except those associated with compatibility

V constraints). Subsequently a new design is created which has active

constraints corresponding to the population generated by the LPT routine.

For this new design, a new set of Lagrangian multipliers can be generated

by linear solution of the optimality criteria equations.

If all the multipliers are positive, the design is optimal.

The presence of one or more negative multipliers indicates that non-optimal

constraints associated with these negative multipliers leaves a reduced set

of potential active constraints for the optimum design.

As discussed in Section 2.4, the use of a Newton-Raphson

technique was investigated for the solution of the full set of nonlinear

equations consisting of the optimality criteria and all the potential constraints.

This approach failed because of the difficulty of identifying meaningful sets

of active constraints. If an incomplete set was selected, there was a

recurrent problem with singularity.

In the present approach, the number of active constraints is

specified a priori. Also the number of constraints is usually a relatively

high proportion of the number of variables -- thereby seemingly avoiding

the problems encountered previously.

The governing nonlinear equations were developed in Section

2. 4, along with the Newton linearization.
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When the constraint population is known the full set of

Newton equations must be reduced to provide the non-singular set to be

solved.

If the structure has m elements, each of which has both

stress and minimum size constraints and there are n redundancies, the

total number of equations available is (3m +2n). The Newton equations

can be arranged in the symmetric array shown in Figure 7.

If a member is known to be at a minimum size constraint, it is not strictly

a variable. Hence the corresponding optimality criterion does not apply

and can be deleted along with the associated variable, MP. Deletion of

the variable, Ai, will result in the elimination of the constraint equation

associated with that minimum area. The minimum area constraint equations

for unconstrained members do not apply. Hence the complete set of minimum

area constraint equations are deleted. Finally, constraint equations and

Lagrangian multipliers for non-stress constrained members are not applicable.

This reduces the number of applicable equations to the more manageable

order (2n + m + s - a) where s is number of stress constraints and a is

number of minimum sized members.

When a feasible design has been generated by the LPT section,

the corresponding Lagrangian multipliers are determined. Constraints

corresponding to any negative multipliers are discarded and the surviving

nonlinear equations are solved iteratively using the full Newton-Raphson

method.
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As starting points, the current values of member sizes

and redundancies are used. Since the equations are linear in the Lagrangian

multipliers, the Newton solution will always generate the same final values

for the multipliers, at each step, entirely independent of initially selected

guess values. The rate of convergence is therefore unaffected by selection

of the starting point for the multipliers. It is controlled by the definition of

the constraint population and is also influenced by the initial guesses for

the areas.

Also, as is common in many linearized solutions of non-

linear problems, the early iterations have to be controlled to prevent

instabilities occurring. The usual method used here is the imposition

of move-limits on variables. These strategies were used in the program

development.

To test the extended computer program, yet another three-

bar truss problem was devised. This one is relatively unique in that it has

only two active constraints. Details of the problem are given in Figure 8.

The program had no difficulty in determining the optimal design.

With the development of the extended program, the 22-bar

structures which had contributed so much to the detection of the non-fully

constrained problems, could not be handled.

Of the eight problems tested, all except Cases 1 and 3 executed

successfully. Table 4 summarizes the numbers of steps required for

convergence. In all a single stress-ratio step was used initially to produce

a more-or-less feasible design.
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As can be seen from Table 4 the results generated correspond

exactly to those given in Table 3.

Although no solution could be generated for Cases 1 and 3

using the general starting point, the program did recognize the optimal

designs when supplied as input. Table 5 provides details.

TABLE 4

ZZ BAR TRUSS - ITERATION HISTORY

STRESS NO. OF
CASE RATIO NO. OF L-P NO. OF N-R FINAL ACTIVE
NO. ITERATION ITERATIONS ITERATIONS WEIGHT CONSTRAINTS REMARKS

1 1 2 L-P Stages

Diverged

2 1 2 7 1202.17 21

3 1 5 L-P Stages
Diverged

4 1 2 1232.9 22 Final Solution
is linear

5 1 2 4 606.75 21 Fastest Con-
vergence

6 1 2 11 1312.76 21 Slow N-R

Convergence

7 1 2 655.70 22

8 1 2 1236.2 22 Final Solution
is linear

TABLE 5
22 BAR TRUSS - TEST CASE RESULTS USING OPTIMAL INPUT

CASEISTRESS NO. OF L-P NO. OF N-R FINAL NO. OF ACTIVE
NO. :RATIO ITERATIONS ITERATIONS WEIGHT CONSTRAINTS REMARKS

1 0 1 4 605.094 21 Optimal

Solution
3 0 1 654.04 22 Input
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Before assessing the reasons for the difficulties with Cases 1 and 3, it is

appropriate to evaluate some of the computational requirements of the new

procedure.

The 22-bar truss has 5 redundancies. Hence, each analysis

requires solution of 5 equations. The stress-ratio requires one such

analysis.

The LPT stage extracts the optimal solution from a set of

(22+5) = 27 equations involving (2x2 2 +5) = 49 unknowns. Typically, the

solution requires 40-50 row/column interchanges. A double precision

Bell LPT routine is used. The double precision was introduced because of

an early impression of conditioning problems. There is no evidence that

double precision is necessary for the cases actually solved. The reduced

N-R used between LPT stages requires the iterative solution of (5+NIQ)

equations, where NIQ is the number of doubly defined elements. When the

solution is linear, 5 equations are solved once.

In the major N-R, the number of symmetric equations solved

was only 31, since 10 stress constraints and 11 minimum areas were defined

for the optimal population. The generation of all the terms in the array

solved is simple, direct and requires no auxiliary analyses to generate

approximate derivatives.

Turning to the two cases on which the program failed, there

appears at first glance to be no obvious reason for the inability of the LPT

routines to generate feasible constraint distributions. It is true that these
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cases represent the most radical variations in allowable stresses coupled

with extremely small minimum areas. Examination of the values of the

Lagrangian multipliers does indicate a potential conditioning problem.

The sum of the Lagrangian multipliers is the merit condition for the LPT

In Case 1, the multipliers range in value from 140. 31 down to .00276 -

which immediately suggests a potential problem. In the successful Case 2,

the corresponding range is 283. 77 to . 00276 - and no difficulty was

encountered. It is, nevertheless, entirely possible that a conditioning

problem does exist in the LPT stage. Switching to double precision in the

LPT routine may be only half the solution. It may be necessary, for

problems as extreme as those considered herein, to formulate the terms

in the LPTin double precision.

Finally, while comparisons are odious, it is relevant to

compare the present solutions for ZZ-bar trusses with a few available from

alternate sources.

The 22-bar was discussed extensively in Reference 9.

Two cases were presented. From the results, these are believed to

correspond to Cases 1 and 2 of the present report. Case 1 yielded a final

weight of 606 lb. and Case 2 a weight of 1203 lb. Both required a large

number of iterations to converge. For Case 2, an even lower weight of

1188 lb. is quoted, but it is not clear as to whether this represents a truly

feasible design.
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The team of Bartholemew and Morris at RAE has developed

the SCICON structural optimization system ( 1 4 ) and applied it to the 22-bar

problem(1 3 ). For Case 2 a weight of 1204.38 lb. was generated in 15 iterations.

This was not a converged design, as was shown by the duality gap between the

above primal weight and a dual weight of 1200.66 lb. The optimization may

have been terminated either due to a limit on number of iterations or because

there is practically no weight change between the last two iterations. The

final design presented is close to the optimum but has a significant number

of constraints (particularly minimum areas) which are not considered active.

That this situation should occur is puzzling since a comparison

of the two methods shows very few real differences. In each case, an LPT

step (or steps) is used to determine a constraint population followed by a

N-R search. The SCICON program allows both accumulation and discard

of constraints. This strategy was not found necessary for the present problems

but is used in later versions of the program. The statement is made by RAE,

that the number of active constraints is typically much smaller than the

number of variables - a fact not really borne out in the current examples.

The RAE solution requires the solution of an m x m matrix, where m is the

number of active constraints. The m x m matrix is itself a triple product

(G H "1 GT) where the H is a diagonal n x n matrix with n as the number of

variables. Finally, it should be noted that G is a constraint derivative

matrix. As is well known, if the constraints are stresses, treating the

internal forces as invariants can lead to gross errors. To include the
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internal force redistribution effects in computing the derivatives either

requires a finite difference method or theformulation.

Both of these methods are computationally expensive. Due to the known

extreme nonlinearity of the problem, it is entirely possible that the

convergence characteristics are strongly influenced by the ac-uracy of the

constraint derivative matrix G.

With the force method, the constraint derivative matrix is

always exact and is generated with a minimum of auxiliary calculation.
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Z. 8 Displacement Constraints

The next stage is the formal incorporation of displacement constraints.

In principle, this does not raise any new problems, since displacement

constraints have already been treated in the form of the compatibility conditions.

The only obvious feature of external displacement constraints are

that they (a) are associated with non-zero constraint values and (b) are

inequality constraints which need not be satisfied in the equality sense.

Compatibility conditions are zero-valued and must be satisfied as equalities

throughout.

The governing Lagrangian is modified as shown in Figure 9.

Figure 9 also gives the modified forms of the derivatives (optimality

criteria and constraints). In the modified equations, one new matrix

parameter is introduced (BD). This is the virtual force in each member

of the structure arising from the (virtual) unit loads imposed on the structure

to calculate the displacements. Strictly from the definition of the virtual

load method BD need only be a system in static equilibrium with the virtual

load. In the present context it has been shown( 2 ), that the BD system must J
be the actual internal force distribution arising from the virtual force.

Because of the additional displacement related terms, the linearized

Newton-Raphson equations must also be expanded as indicated in Figure 10.

Naturally only active displacement constraints will be retained in the N-R

equations to be solved. The total number of equations is given by

(Zn + m + s - a + d) where d is the number of active displacement constraints.
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The additional term, d, does not necessarily mean an increase in the order

of the equations since the total number of active constraints can still never

exceed the number of variables. The upper limit on the number of equations

is (Zn + Zm - 1) which would only occur when no minimum size constraints

existed.

Because of the similarity between the compatibility and displacement

constraints, modification of the computer program was relatively straight-

forward. The BD matrices necessitated the introduction of z ditional

loading cases, but this concept had been used in the earlier OPTIM programs.

The new program was tested on small scale 3-bar truss problems as

usual. Figure 11 provides details. A few minor developmental

problems were encountered. More limits were introduced on the early

iterations to prevent initial transients producing unstable situations. Also

the ability to acquire and discard constraints was also incorporated.

After each iteration, following the initial transients--estimated as

dying out in 2 or 3 iterations, the generated design was compared with all

constraints. If any additional constraints had become activated, they were

duly recognized and considered in subsequent steps. If the number of

recognized constraints equals or exceeds the number of variables, the

program would then return to theLPTmode to select a new design. Discard

of constraints was based on the same criterion as used initially--i.e., non-

positive Lagrangian multipliers.
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The next problem tested is another variant of the 10-bar truss

structure. This problem used in Reference 1, proved to be a

rather difficult one to solve and no exact optimum solution has been

published. The problem is shown in Figure 12. The major

difficulty arises from the specification of constraints on the vertical

displacements at both the lower and upper nodes at the free end. If it is

assumed, say, that the lower node will deflect mnore than the upper and

the structure is optimized using FSD and the envelope method with the

single displacement constraint, the upper node in the optimized system

experiences an excessive displacement. Using the upper displacement as

the constrained value reverses the situation and the lower displacement

violates at the new optimum. Using both upper and lower displacements

in the envelope method produces an unsatisfactory situation in which no

converged solution is obtained. In the course of the iterations, which tend

to become unstable at one stage, a very low weight design is generated.

From examination of this design, it does appear to be near optimumn.

Unfortunately it has not been possible to determine exactly what the true

optimum is and which constraints are active.

Using the current version of the program the above problem was

tried. A number of difficulties were encountered.

In the first place, it proved to be impossible to generate a feasible

full vertex design, based upon any population predicted by an LPT solution.

Although a number of iterations were permitted, resulting in a number of
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different LPT populations, it was never possible to converge on any full-

vertex designs using the Newton-Raphson technique. This situation had

been encountered previously, even for stress limited problems. The

solution adopted at that time was to generate a fully stressed design (or a

close approximation thereto) using a limited number of s'ress-ratio

iterations. For this design, the Lagrangian multipliers were found and after

any constraint discard, the full Newton-Raphson search was used. In the

presence of potentially active displacement constraints, the FSD alone may

result in a violated design. From expediency, it was decided to use this

FSD suitably scaled to ensure satisfaction of the single dominant displacement

constraint as the starting point for the Newton search. Consideration was

also given to the use of an envelope method to generate a starting point,

either using a single or multiple displacement constraints. This approach

was not implemented in the present program for a number of reasons.

Firstly, the envelope method is computationally more complex than the

stress-ratio FSD. Secondly, from the previous history with this particular

problem, use of either of the envelope methods could be unreliable--a single

constraint always failed and double constraints would not converge.

Using this scaled FSD as a starting point, the Newton-Raphson stage

was entered. For a limited number of steps, convergence appeared to be

satisfactory--moving in the direction of the assumed optimal design. But

after additional constraints were captured, according to the built-in logic,

the direction of convergence altered and rapidly became unstable.

Table 6 provides details.
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After considerable numerical experimentation the problem appeared

to reside in the accumulation of undesirable constraints during the search,

with no satisfactory indications which should be rejected. Thus the problem

again appeared to devolve on the question of constraint identification.
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3.0 PROGRAM DEVELOPMENT AND ORGANIZATION

The Force Method Optimization (FMO) program was developed and

*tested using the Bell RAX system. The convenience and ready access of

the RAX system make it attractive for use in structural and other program

development, although the RAX core storage capacity has limited the FMO

test problem size to no more than that required for solution of the 22-bar

truss. Very recently, a Virtual Storage system (VSPG) has been installed

at Bell which considerably increases the RAX storage capacity, but was not

yet in place during the program development.

A structure cutter was also developed and tested as part of the FMO

program development, but was not integrated in the program since it would

have further reduced the problem size which could be analyzed on the RAX

system. The essential or basic function of the structure cutter in this

application, i. e. , provide values of the b0 and b, matrices, was performed

by hand calculation and input as basic data for most of the test problems

analyzed during program development.i

Much discussion of how the FMO program evolved to its present

form is sprinkled throughout the Technical Discussion, Section 2. 0, and the

reader is referred to this discussion for clarification of specific points

regarding why a particular action or step was required. Also, since the

FMO RAX program is reasonably straightforward in programming style,

it does not appear to be necessary to describe in detail the programming

steps which were followed to implement the stages of program development.
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Hence, the principal item to be discussed in this section is the organization

of the FMO RAX program. A flow diagram of the RAX program is presented

in Figure 13. Referring to the flow diagram, material properties and other

data pertaining to the structure to be analyzed are input to the program as

basic data. The freefield format is used, as shown in Figure 14, for the

3-bar truss of Figure 11. The data to be entered consists of the number

of members, redundancies, and displacement constraints in the first line,

followed by the densities, elastic moduli, and member lengths in the second,

third, and fourth lines. The selected valves of minimum member area and

the upper and lower stress limits are entered in the fifth, sixth, and seventh

lines, followed by inputs for the displacement limits, and the calculated

values of b o and bl. This completes the basic data entries.

A starting point design (guess vectors) can be input after the basic

data entry, or the default option exercised, which automatically selects

minimum areas as the initial point design. Based on experience, a closer

approximation to the optimal system may be obtained using a stress-ratio

design. Hence, a stress-ratio cycle is available to generate a "better"

initial point design, as an option.

The starting or initial point design is applied to the LPTroutine which

generates a potential constraint population by solving a set of non-square

linear equations in (m + p) unknowns corresponding to the optimality criteria.

The LP7froutine was not developed during this program. It is a mathematical

routine obtained from the Bell library of computational routines. It also
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Line 1 3,1,2 No. of Members, Redundancies,
Dispi. Const.

2 . 1,. 1,. 1 Density, lbs/cu. ft.
3 10000., 10000.,*10000. Elastic Moduli, psi
4 125..100.,125. Length, inches
5 .0l,.01'.01 Minimum A rea, sq. in.
7 50., 50., 50. Upper Stress Limit, psi
8 -50., -50., -50. Lower Stress Limit, psi
9 1.,. 1, . 1 Displacement Limit, in.

10 20.,-7.,0. bo matrix

11 1.66667,-1.3333,0. bI
12 0.,1.,0. matrix

FIGURE 14 -BASIC DATA -INPUT FORMAT
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generates values for the non-zero Lagrangian multipliers. If the population

shows that each member is constrained, i. e. , either a minimum area or a

maximum stress is present in each member, the solution of linear equations

leads to the required internal force distribution which satisfies the prescribed

FSD conditions without iteration. If the constraint population is other than

a FSD type, i.e. , a member may be defined as both fully stressed and at

minimum area, this will result in another member being completely

unrestrained. The set of compatibility equations must be expanded by

additional relationships. The number of variables increases to include

redundancies and undefined areas and the equations become nonlinear. A

Newton-Raphson routine is used to generate a design corresponding to the

specified constraints. The constraint population which results from this

design is checked for correspondence with the original LPT population output

(optimality criteria). if this population check fails, the constrained design

is iterated (no more than 3 times) through the LPT routine until population

agreement is obtained. A FSD is generated if population agreement cannot

be obtained after three iterations, and the program passes out of the LPT loop.

As noted in the flow diagram, a check of the Lagrangian multipliers

is performed at this point. If, as discussed in Sections 2. 5 and 2. 6, all

multipliers associated with non-zero type constraints have positive values,

the design is considered to be optimal, and the results are printed, ending

the program operation. The alternate condition, i. e. , one or more negative

multipliers indicates that non-optimal constraints are present. Discarding
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the constraints associated with these negative multipliers leaves a reduced

set of potential active constraints for the optimum design. The resulting

nonlinear equations are solved iteratively using the Newton-Raphson

routine until convergence is obtained, indicating an optimum design has

been reached. Results are printed, ending program operation.

-
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4.0 CONCLUSIONS

The new approach to structural optimization via the use of the force

method of analysis and a linear programming stage has achieved a major

degree of success. Some of the classic optimization test problems have

been reduced to almost trivial solutions. The 10-bar truss problem with

non-uniform stresses is solved without iteration. On the larger 22-bar

trusses, solutions have been achieved in the majority of cases, which are

confirmed as being optimal by comparison with analytically generated

results. The results provide a clear indication of the validity of the approach

for the rigorous incorporation of stress constraints. Because of the relatively

rapid convergences achieved, the iterative computational effort appears to

be significantly lower than that required by alternate approaches. The key

to the generation of the optimal design lies in the ability to predict or

identify the active constraints. The linear programming stage incorporated

in the developed approach does an excellent job of selecting dominant

constraints through local linearization of the non-linear domain, but, as in

any non-linear situation, does require either a good starting point and/or

a well conditioned problem to solve.

In the study of the 22-bar problems, no solutions could be generated

using the standard program, although the correctness of the optima were

demonstrated by the program. in these cases, one of which was a full

vertex design, the problem was felt to be attributable to conditioning. This

could not be entirely proven, since some of the other 22-bar cases which
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were successfully solved might have appeared to be more poorly conditioned.

The conditioning problem here was taken to be associated with the very large

spreads in magnitude between the largest and smallest Lagrangian multipliers.

The spread is 105 and since the merit function is the sum of the multipliers,

there is potential for round-off error to obscure the situation and lead to

erroneous definition of active constraints.

Naturally, the ZZ-bar problem is an unrealistic one selected to

exhibit certain characteristics on a relatively small scale and to be a test

for optimization techniques. It is not clear whether the problem is really

pathological - especially in its ranges of values of multipliers - or if it is

truly characteristic of larger scale problems. Some consideration has been

given to transformation of the problem to try and eliminate the size disparity

in numbers which are linearly combined. Simple scaling alone will not

suffice, but no suitable transformation could be evolved.

The presence of very small, but non-zero, values for Lagrangian

multipliers associated with real (active) constraints presents a hazard in

the Newton-Raphson search procedure which allows for constraint acquisition

and discard. The question of when a multiplier becomes zero and the corres-

ponding constraint should be discarded is made extremely difficult, since

such small values are readily masked by round-off error in large scale

problems.

With regard to displacement constraints, the fundamental concepts

and approach seem to have been validated. Some small scale problems were
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successfully solved. Difficulties with constraint detection on larger

problems appear to remain. In purely stress and minimum size problems,

the number of active constraints equals or approaches the number of

variables. The population defined by the LPT stage is therefore a reliable

indication of the final active constraints. In the presence of displacement

constraints, this no longer holds true. The number of active constraints

is frequently very much reduced and the LPT is much less reliable in

predicting population.

To overcome this situation, the expedient solution of selecting a

single dominant displacement constraint was adopted to generate a starting

design for the Newton search. This did not perform satisfactorily and

placed too much reliance on the constraint acquisition/discard algorithms.

It is clear that the method of selecting a starting design for the Newton

search must be revised, but in what direction requiires some further

consideration.

Although difficulties were encountered in the incorporation of

displacement constraints per se, it is believed that these are operational

problems of technique and strategy rather than of concept.

In all optimization research, there has always been a great deal

of concern for computational efforts involved in the various approaches.

Both the numbers of iterations and the cost per iteration are major

contributing factors. In this force method work, the costs appear to

compare most favorably with other methods. The force method, generally,
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requires the solution of a smaller array of equations than the displacement

method for a given structure (redundancies versus displacements). The need

for a structure cutter in the force method has a major cost impact in a

single-shot analysis but this effect is reduced considerably in iterative

situations. The LPT stage is equivalent to the inversion of an array of

order of the number of variables. The full Newton-Raphson search does

require consideration of a larger set of equations - iteratively. For the

ZZ-bar trusses 31 equations are required. Although this array is large,

the computation of the individual terms is very straightforward. No

auxiliary analyses are required to generate approximations to gradients

of constraints. The absence of approximations throughout is considered

to be a major factor in the good convergence characteristics observed.

The size of the Newton array may be a problem in larger systems. The

matrix is symmetric and sparse, so that the possibility of using efficient

solution techniques exists.

In view of the successful solutions demonstrated, it is recommended

that development of this force method approach be continued. Clearly, the

problems encountered will have to be overcome. Further, study of the

conditioning problem in the LPT stage may be solvable either through some

transformation or'use of a more sophisticated LPT routine.

For displacement constraints, a method of selecting a better starting

point for the N. R. search is required when the LPT is unsatisfactory. Also

the strategies for acquisition and discard of constraints during the N. R.

stage may require further treatment.
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Finally, the search for alternate methods of handling the entire

problem of constraint identification should be pursued. The present work

is felt to have been a positive step in the direction of generating an

operational optimization program and provides a firm basis for future

work in this complex but rewarding technology.
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